Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines
نویسندگان
چکیده
BACKGROUND Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC). Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown. METHODS The expression of molecules involved in the mitogen-activated protein kinase (MAPK) signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun) was measured. RESULTS The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines. CONCLUSIONS The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.
منابع مشابه
Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma
Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly est...
متن کاملSirtuin 3 enhanced drug sensitivity of human hepatoma cells through glutathione S-transferase pi 1/JNK signaling pathway
SIRT3, a class III histone deacetylase, has been implicated in various cancers as a novel therapeutic target. In hepatocellular carcinoma (HCC), we previously reported that SIRT3 induced cell apoptosis by regulating GSK-3β/Bax signaling pathway. Downregulation of SIRT3 in HCC cells facilitates tumor cell survival. In this study, we found that chemotherapeutic agents (doxorubicin, cisplatin and ...
متن کاملSynergistic Inhibitory Effect of Hyperbaric Oxygen Combined with Sorafenib on Hepatoma Cells
OBJECTIVES Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only ...
متن کاملSIRT6 Depletion Sensitizes Human Hepatoma Cells to Chemotherapeutics by Downregulating MDR1 Expression
Multidrug resistance (MDR) due to overexpression of MDR1 is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). In this study, we explored the function and underlying molecular mechanism of SIRT6 in MDR of HCC. Chemotherapeutic agents (doxorubicin, cisplatin, and sorafenib) treatment increased SIRT6 mRNA and protein level in two HCC cell lines in a dose-dependent mann...
متن کاملHuman hepatocellular carcinoma cell lines exhibit multidrug resistance unrelated to MRD1 gene expression.
Multidrug resistance of human cancer cells may result from expression of P-glycoprotein, the product of the MRD1 gene, acting as an energy-dependent drug efflux pump. However, direct evidence that expression of the MDR1 gene contributes to the multidrug resistance of human liver carcinomas has not been established. In this study, we tested five cell lines derived from human hepatocellular carci...
متن کامل